Subsets Pattern
🎲 Subsets Pattern - Generating Power Set [1, 2, 3]
All Subsets (1 total):
Process:
Step 1: Start with empty set
Progress: 1 / 4
Key Formula:
For n elements, there are 2^n subsets. Each element either included or excluded. This BFS approach: start with [], then for each number, add it to all existing subsets!
🎯 Explain Like I'm 5...
Imagine you have 3 toys: Car, Bear, and Crayons. How many different ways can you play? You could play with NONE, or ANY combination!
🎮 All Your Choices (Subsets):
- • Play with NOTHING [] (that's boring!) 😴
- • Just Car [🚗]
- • Just Bear [🧸]
- • Just Crayons [🎨]
- • Car + Bear [🚗, 🧸]
- • Car + Crayons [🚗, 🎨]
- • Bear + Crayons [🧸, 🎨]
- • ALL THREE! [🚗, 🧸, 🎨]
Total: 8 ways! (2 × 2 × 2 = 2³ = 8)
🚀 The Pattern: For EACH toy, you have 2 choices: Include it or Don't include it! With 3 toys, that's 2×2×2 = 8 subsets. It's like a tree where every branch splits into "yes" or "no"! 🌳
When Should You Use This Pattern?
- ✓Finding all combinations or permutations
- ✓Problems asking for "all possible" solutions
- ✓Generating power sets
- ✓When you need to explore all options
📝 Example 1: Generate All Subsets
Given a set of distinct integers, generate all possible subsets (the power set).
Step-by-Step Thinking:
- Start with empty subset: [[]]
- For each number, add it to all existing subsets
- Add 1: [[], [1]]
- Add 2: [[], [1], [2], [1,2]]
- Add 3: [[], [1], [2], [1,2], [3], [1,3], [2,3], [1,2,3]]
import java.util.*;public class Subsets { // Generate all subsets (BFS approach) public static List<List<Integer>> findSubsets(int[] nums) { List<List<Integer>> subsets = new ArrayList<>(); subsets.add(new ArrayList<>()); // Start with empty subset for (int num : nums) { // Take all existing subsets and add current number to them int size = subsets.size(); for (int i = 0; i < size; i++) { // Create new subset from existing one List<Integer> newSubset = new ArrayList<>(subsets.get(i)); newSubset.add(num); subsets.add(newSubset); } } return subsets; } // Alternative: Recursive (DFS) approach public static List<List<Integer>> findSubsetsRecursive(int[] nums) { List<List<Integer>> subsets = new ArrayList<>(); backtrack(nums, 0, new ArrayList<>(), subsets); return subsets; } private static void backtrack(int[] nums, int start, List<Integer> current, List<List<Integer>> subsets) { // Add current subset subsets.add(new ArrayList<>(current)); // Try adding each remaining number for (int i = start; i < nums.length; i++) { current.add(nums[i]); // Choose backtrack(nums, i + 1, current, subsets); // Explore current.remove(current.size() - 1); // Unchoose (backtrack) } } public static void main(String[] args) { int[] nums = {1, 2, 3}; System.out.println("BFS approach:"); System.out.println(findSubsets(nums)); System.out.println("\nDFS approach:"); System.out.println(findSubsetsRecursive(nums)); // Both output: [[], [1], [2], [1,2], [3], [1,3], [2,3], [1,2,3]] }}📝 Example 2: Subsets with Duplicates
Given an array that may contain duplicates, generate all unique subsets.
import java.util.*;public class SubsetsWithDuplicates { public static List<List<Integer>> findSubsets(int[] nums) { // Sort to handle duplicates Arrays.sort(nums); List<List<Integer>> subsets = new ArrayList<>(); subsets.add(new ArrayList<>()); int startIndex = 0; int endIndex = 0; for (int i = 0; i < nums.length; i++) { startIndex = 0; // If current element is duplicate, only add to subsets // created in previous iteration if (i > 0 && nums[i] == nums[i - 1]) { startIndex = endIndex + 1; } endIndex = subsets.size() - 1; // Add current number to existing subsets for (int j = startIndex; j <= endIndex; j++) { List<Integer> newSubset = new ArrayList<>(subsets.get(j)); newSubset.add(nums[i]); subsets.add(newSubset); } } return subsets; } public static void main(String[] args) { int[] nums = {1, 2, 2}; List<List<Integer>> subsets = findSubsets(nums); System.out.println("Subsets: " + subsets); // Output: [[], [1], [2], [1,2], [2,2], [1,2,2]] // Note: No duplicate [2] subsets! }}📝 Example 3: Permutations
Generate all permutations of a given array (order matters!).
import java.util.*;public class Permutations { public static List<List<Integer>> findPermutations(int[] nums) { List<List<Integer>> result = new ArrayList<>(); Queue<List<Integer>> permutations = new LinkedList<>(); permutations.add(new ArrayList<>()); // Process each number for (int num : nums) { int n = permutations.size(); // Take each existing permutation for (int i = 0; i < n; i++) { List<Integer> oldPermutation = permutations.poll(); // Insert current number at every possible position for (int j = 0; j <= oldPermutation.size(); j++) { List<Integer> newPermutation = new ArrayList<>(oldPermutation); newPermutation.add(j, num); // If permutation is complete, add to result if (newPermutation.size() == nums.length) { result.add(newPermutation); } else { permutations.add(newPermutation); } } } } return result; } // Alternative: Recursive approach with backtracking public static List<List<Integer>> findPermutationsRecursive(int[] nums) { List<List<Integer>> result = new ArrayList<>(); backtrack(nums, new ArrayList<>(), result); return result; } private static void backtrack(int[] nums, List<Integer> current, List<List<Integer>> result) { // Base case: permutation is complete if (current.size() == nums.length) { result.add(new ArrayList<>(current)); return; } // Try adding each number that's not already in current permutation for (int num : nums) { if (current.contains(num)) continue; // Skip if already used current.add(num); // Choose backtrack(nums, current, result); // Explore current.remove(current.size() - 1); // Unchoose } } public static void main(String[] args) { int[] nums = {1, 2, 3}; System.out.println("Permutations:"); System.out.println(findPermutations(nums)); // Output: [[1,2,3], [1,3,2], [2,1,3], [2,3,1], [3,1,2], [3,2,1]] }}🔑 Key Points to Remember
- 1️⃣Two approaches: BFS (iterative) or DFS (recursive backtracking)
- 2️⃣Subsets: 2^n combinations, Permutations: n! orderings
- 3️⃣Time Complexity: O(2^n) for subsets, O(n!) for permutations
- 4️⃣For duplicates, sort first and handle carefully!
💪 Practice Problems
- • Letter Case Permutation
- • Combination Sum
- • Palindrome Partitioning
- • Generate Balanced Parentheses
- • Unique Generalized Abbreviations